Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Aman Ullah

Aman Ullah

University of Alberta, Canada

Title: Green bionanocomposites from renewable resources

Biography

Biography: Aman Ullah

Abstract

Biodegradability and renewability has led renewed interest in protein based films reinforced with nanoparticles. Bionanocomposites have gained attention because of their enhanced material properties with the aid of nano-reinforcements. The effects of two different nanoparticles, montmorillonite (MMT) and cellulose nano-crystals (CNCs), at different loading contents (0%, 1%, 3%, 5% and 10%) were studied as a reinforcement material in modified chicken feather keratin. Compression molding was employed to prepare bionanocomposites films thermo-plastically. The effect of CNC and MMT addition, their disposition and impact on the final material properties was investigated by differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA), tensile testing and dynamic mechanical analysis (DMA). The morphology of in situ modified keratin-based nano-composites and the extent of nanoparticle dispersion was observed through scanning electron microscopy (SEM), transmission electron microscopy (TEM) and wide-angle X-ray diffraction (WAXD), respectively. The molecular level interactions of CNC’s and MMT’s with keratin biopolymer were investigated by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) techniques. Results indicated improved thermal stability and shift in glass transition temperature for both nano-reinforced bio-composites. Tensile strength was enhanced significantly with the addition of MMT; however, increased percent elongation was observed in case of CNC-reinforced biomaterials. The changes in the chemical bonding of keratin biopolymer reinforced with MMT/CNC compared to neat keratin biopolymer were observed by XPS spectra. These results suggest that high performance bio-nanomaterials can be developed from feather keratin through in situ dispersion of MMT and CNC nanoparticles, followed by compression molding.

 

Image

Figure-1: Overview of in situ bionanocomposites preparation.

Recent Publications

  1. Kaur M, Arshad M, Ullah A (2018) In situ Nano-reinforced Green Bionanomaterials from Natural Keratin and Montmorillonite (MMT)/Cellulose Nano-crystals (CNC). ACS Sustainable Chem. Eng.; 6(2): 1977–1987.
  1. Arshad M, Kaur M, Ullah A (2016) Green Biocomposites from Nanoengineered Hybrid Natural Fiber and Biopolymer. ACS Sustainable Chemistry & Engineering; 4(3): 1785-1793.

References

  1. Echeverría et al. (2014) Nanocomposites films based on soy proteins and montmorillonite processed by casting. J. Membr. Sci.; 449: 15-26.
  1. Klemm et al. (2011) Nanocelluloses: A New Family of Nature-Based Materials Angew. Chem., Int. Ed.; 50(24): 5438-5466.